CarbonFiberWater Purification Technology for Waste Water Treatment

Mira Carbon®

SO-EN CO.,LTD https://so-en.net/

MiraCarbon Technology for Water purification

CarbonFiber is a strong, lightweight fiber substance having a fine graphite crystal structure.

Excellent Biofilm Feature

Activated Sludge

Nitrifying Bacterial Sludge 4.0 <-CF (g-sludge/m²-fiber surface) CF AP Immobilized sludge PAN 3.0 PE 2.0 PΕ 0.0 15 20 25 Time (h)

Comparison of various materials

Figure 4. Adhesion rate constants of bacterial cells to fibrous supports. Mean value and standard deviations from five replicates are shown (I = 202 mM).

CF: Carbon Fiber

AP: Aromatic Polyamide

PAN: Preoxidized Polyacrylonitrile

PE: Polyethylene

Ref) Carbon Fiber as an Excellent Support Material for Waste Water (Environmental Science Technology 2012)

Mechanism of water purification

* Anaerobic bacteria stay inside of CarbonFiber while aerobic bacteria stay in its surface.

Improve Wastewater Treatment Facilities Function

Water purification by MiraCarbon

- Decrease Biological Oxygen Demand(BOD)
- Decrease Chemical Oxygen Demand(COD)
- Decomposability decrease Total Nitrogen(TN) and Total Phosphorus (TP)
- Adsorbable decrease Suspended Solid((SS))
- Decrease heavy metals adsorption

Installation site in wastewater plants

- Flow equalization tank (load reduction)
- ■Biological aeration tank (contact media)
- Settling tank (contact media, adsorb media)
- Filtration tank (contact media, adsorb media)
- Effluent tank (improvement of effluent water quality)

MiraCarbon Installation for WWT

Assemble and install
MiraCarbon singlemodule
according to
CarbonFiber amount &
Installation method.

■ Biological Treatment Tank

With MiraCarbon, using the activated sludge method and contact aeration method etc. as a contacting media in biological treatment tank, it active microorganisms improvement and stable of treatment.

■ Settling Tank

Suspended solid and microorganisms in settling tank are adsorbed on the MiraCarbon, it biodegrade and improve treatment water quality.

■ Septic Tank

With MiraCarbon in anaerobic and contact aeration tank, it promote biological decomposition contaminants.

Advantages of CarbonFiber method

With ativated microoganisms

Improve treatment speed.

Reduce contact time

Improve treatment capacity!

If it is same contact time

Improve water purification!

Advantages

- ☆ Decomposition processing speed of organic matter etc. is fast due to microbial activation.
 - → Reduce contact time
 - → Increase volume of treated water
 - → Improve treatment quality
- ★ Large denitrification, dephosphorylation.
- ★ Suppression of greenhouse gas emissions.
- ☆ Less excess sludge generation.
- ☆ Small odor occurs.
- ☆ High suspended supplementary effect.
- ☆ Reduction of aeration volume.
- ☆ Reduction of chemicals.
- ★ Low installation cost.
- ★ Easy maintenance.

Comparison of Effect

Activated sludge method \s
CarbonFiber method

Ref)Mitigation of nitrous oxide(N2O)emission from swine waste water treatment in an aerobic bioreactor packed with carbon fibers,Animal Science Journal, In Press, 2015

Nitrogen removal with MiraCarbon

Comparison with wastewater treatment method

Suppression of greenhouse gas N2O emission

Activated sludge method

CarbonFiber method

Comparison of nitrogen removal

Activated sludge method

By nitrifying bacteria
NH4 → NO2 → NO3
NH4: Decreases
Total nitrogen TN: Remains

CarbonFiber method

By nitrifying bacteria
NH4 → NO2 → NO3
By denitrifying bacteria
NO3 → N2 + H2O
Total nitrogen TN: Removed

Comparison of greenhouse gases

Activated sludge method

Greenhouse gas N2O are generated by accumulation of nitrogen component (NH4 + NO2 + NO 3)

CarbonFiber method

Nitrogen component are decomposed and removed and greenhouse gas N2O does not occur.

 $NH4 \rightarrow NO2 \rightarrow NO3 \rightarrow N2$

Phosphorus removal with MiraCarbon Biological treatment method

Phosphate Intake by Microorganism → Release → Mass Intake (aerobic) (anaerobic) (aerobic)

Phosphate removal

Polyphosphate

PO₄ release in depths of CarbonFiber. (anaerobic) PO₄ intake at the surface of CarbonFiber. (aerobic)

Phosphorus removal with MiraCarbon + Cation

Phosphate ion combined with Iron ion to form Iron phosphate

$$PO_4^{3-} + Fe^{3+} \rightarrow FePO_4$$

◆Relations between CarbonFiber and metal ion Electronegativity : Carbon [C] > Iron [Fe]

